ln(x^2+x)+lne=ln(x+1)

Simple and best practice solution for ln(x^2+x)+lne=ln(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ln(x^2+x)+lne=ln(x+1) equation:


Simplifying
ln(x2 + x) + lne = ln(x + 1)

Reorder the terms:
ln(x + x2) + lne = ln(x + 1)
(x * ln + x2 * ln) + lne = ln(x + 1)
(lnx + lnx2) + lne = ln(x + 1)

Reorder the terms:
eln + lnx + lnx2 = ln(x + 1)

Reorder the terms:
eln + lnx + lnx2 = ln(1 + x)
eln + lnx + lnx2 = (1 * ln + x * ln)
eln + lnx + lnx2 = (1ln + lnx)

Add '-1lnx' to each side of the equation.
eln + lnx + -1lnx + lnx2 = 1ln + lnx + -1lnx

Combine like terms: lnx + -1lnx = 0
eln + 0 + lnx2 = 1ln + lnx + -1lnx
eln + lnx2 = 1ln + lnx + -1lnx

Combine like terms: lnx + -1lnx = 0
eln + lnx2 = 1ln + 0
eln + lnx2 = 1ln

Solving
eln + lnx2 = 1ln

Solving for variable 'e'.

Move all terms containing e to the left, all other terms to the right.

Add '-1lnx2' to each side of the equation.
eln + lnx2 + -1lnx2 = 1ln + -1lnx2

Combine like terms: lnx2 + -1lnx2 = 0
eln + 0 = 1ln + -1lnx2
eln = 1ln + -1lnx2

Divide each side by 'ln'.
e = 1 + -1x2

Simplifying
e = 1 + -1x2

See similar equations:

| 2/3r=9 | | -7/2x=3 | | Y^2-9=4y-12 | | 15y=10x+5 | | 4y=9x+12 | | -2x+1=-3x-2 | | 2(7-x)=9 | | 6x=2(7x+4) | | 3x-14=4x-13 | | -5x^2-25x=0 | | 3x-12=-4x+58 | | 6x+12=2(3x-8) | | -2x-16=-x-17 | | -6x+14=-3x+29 | | x+7=-4x+52 | | 5x+22=2x+52 | | 3x^3+18x^2+5x+30=0 | | 3x^2+18x^2+5x+30=0 | | -4x-6=-2x-16 | | 0.5x+3.5=1.33x-7 | | -7x+1=-5x-19 | | 25x^3y/-5x^2y^3 | | 42=3(7+d) | | h=-16t^2+14t+1.2 | | P-14+48=0 | | 6(2m-8)-4m+2=6-(6m-12) | | 3000x-220x^2+4x^2=0 | | 6x+8=8-12x+6 | | 2b-9=3 | | 7a*7a+32=7-40a | | -7725+185x=0 | | -7725+185x=-12790 |

Equations solver categories